Low voltage electrical distribution

Masterpact NW

Circuit breakers and switch-disconnectors from 800 to 6300 A

User manual

09/2009

Courtesy of NationalSwitchgear.com
Contents

Identifying Masterpact
- Rating plate 2

Discovering Masterpact
- Components 4

Using Masterpact
- Understanding the controls and indications 8
- Charging the circuit breaker 9
- Closing the circuit breaker 10
- Opening the circuit breaker 11
- Resetting after a fault trip 12
- Locking the controls 13

Using the Masterpact drawout chassis
- Identifying the circuit breaker positions 16
- Racking 17
- Matching a Masterpact circuit breaker with its chassis 19
- Locking the switchboard door 20
- Locking the circuit breaker in position 21
- Locking the safety shutters 24

Identifying the electrical auxiliaries
- Identification of the connection terminals 26
- Electrical diagrams 27
- Operation 29

Discovering Masterpact's accessories
- Micrologic control units 30
- Indication contacts 31
- Auxiliaries for remote operation 33
- Device mechanical accessories 35
- Chassis mechanical accessories 37

Inspecting and testing before use
- Initial tests 40
- What to do when the circuit breaker trips 41

Maintaining Masterpact performance
- Recommended maintenance program 42
- Maintenance operations 43
- Ordering replacement parts 45
- Troubleshooting and solutions 46

Checking Masterpact operating conditions
- Environmental conditions 48
The Masterpact NW range of circuit breakers and switch-disconnectors offer current ratings from 800 A to 6300 A.

Five different performance levels are available:
- N1: standard with total discrimination
- H1: high performance with total discrimination
- H2: a compromise between current limiting and discrimination
- H3: high breaking capacity and discrimination, without current limiting
- L1: high level of current limiting, with some discrimination.

Rating plate

- Icu kA at 415 V
- Ics = 100% Icu

- L1
- H3
- H2
- H1
- N1
Masterpact circuit breakers are available in drawout and fixed versions. The drawout version is mounted on a chassis and the fixed version is installed using fixing brackets.

Drawout version

![Drawout version diagram]

Fixed version

![Fixed version diagram]
Discovering Masterpact Components

Front

Trip indication button used to reset before closing

Indicator for position of the main contacts

"Springs charged" and "Ready to close" indicator

Rating plate

Locking by padlock or lead-seal cover for pushbuttons
Using Masterpact

Understanding the controls and indications

Circuit breaker open and discharged

Circuit breaker closed and discharged

Circuit breaker open, charged and not "ready to close"

Circuit breaker closed, charged and not "ready to close"

Circuit breaker open, charged and "ready to close"
The charge status is indicated as follows.

The springs in the circuit breaker operating mechanism must be charged to store the energy required to close the main contacts. The springs may be charged manually using the charging handle or the optional MCH gear motor.

Manual charging:
Pull the handle down seven times until you hear a "clack".

Automatic charging:
If the MCH gear motor is installed, the spring is automatically recharged after each closing.
Closing the circuit breaker

Closing conditions
Closing (i.e. turning the circuit ON) is possible only if the circuit breaker is "ready to close". The prerequisites are the following:
- device open (OFF)
- springs charged
- no opening order present.

If the circuit breaker is not "ready to close" when the order is given, stop the order and start again when the circuit breaker is "ready to close".

Closing the circuit breaker

Locally (mechanical)
Press the mechanical ON pushbutton.

Locally (electrical)

- Press the electrical closing pushbutton. By adding an XF closing release, the circuit breaker can be closed remotely.

Remotely

When connected to a remote control panel, the XF closing release (0.85 to 1.1 Un) can be used to close the circuit breaker remotely.

Enabling or disabling the anti-pumping function
The purpose of the mechanical anti-pumping function is to ensure that a circuit breaker receiving simultaneous opening and closing orders does not open and close indefinitely.

If there is a continuous closing order, after opening the circuit breaker remains open until the closing order is discontinued. A new closing order then closes the circuit breaker. This function can be disabled by wiring the closing release in series with the PF "ready to close" contact.
Opening the circuit breaker

Locally
Press the OFF pushbutton.

Remotely
Use one of the following solutions:
- one or two MX opening releases (MX1 and MX2, 0.7 to 1.1 Un)
- one MN undervoltage release (0.35 to 0.7 Un)
- one MN undervoltage release (0.35 to 0.7 Un) with a delay unit (R or Rr).

When connected to a remote control panel, these releases can be used to open the circuit breaker remotely.
The circuit breaker signals a fault by:
- a mechanical indicator on the front panel
- one or two SDE "fault-trip" indication contacts (SDE/2 is optional).

Locally
If the circuit breaker is not equipped with the automatic reset option, reset it manually.

Remotely
Use the Res electrical remote reset option (not compatible with an SDE/2).
Locking the controls
Disabling circuit-breaker
local closing and opening

Pushbutton locking using a padlock
(shackle diameter 5 to 8 mm), a lead seal or screws.

Locking
Close the covers.

Unlocking
Remove the padlock, lead seal or screws.

Insert the padlock shackle, lead seal or screws.

Lift the covers and swing them down.

The pushbuttons are no longer locked.
Combination of locking systems
To disable circuit-breaker closing using the pushbuttons or remotely, use as needed:
- a padlock
- one or two keylocks
- a combination of the two locking systems.

Install a padlock (maximum shackle diameter 5 to 8 mm)

Locking
Open the circuit breaker. Pull out the tab. Insert the padlock shackle.

Check
The controls are inoperative.

Unlocking
Remove the padlock.
Locking the controls
Disabling local and remote closing

Locking the controls with one or two keylocks

Locking
- Open the circuit breaker.
- Turn the key(s).
- Remove the key(s).

Check
The controls are inoperative.

Unlocking
- Insert the key(s).
- Turn the key(s).
- The key(s) cannot be removed.

Four types of keylocks are available.

- **RONIS**
- **PROFALUX**
- **CASTELL**
- **KIRK**
Identifying the circuit breaker positions

The indicator on the front signals the position of the circuit breaker in the chassis.

- "connected" position
- "test" position
- "disconnected" position
These operations require that all chassis-locking functions be disabled (see page 21).

Prerequisites
To connect and disconnect Masterpact, the crank must be used. The locking systems, padlocks and the racking interlock all inhibit use of the crank.

Withdrawing the circuit breaker from the "connected" to "test" position, then to "disconnected" position

1. The circuit breaker is in "connected" position.
2. The circuit breaker is in "test" position.
3. The circuit breaker is in "disconnected" position.

Caution. The right-hand rail cannot be removed if the crank has not been removed or if the circuit breaker is not fully disconnected.

Removing the rails
Press the release tabs and pull the rails out.

To put the rails back in, press the release tabs and push the rails in.
Using the Masterpact drawout chassis

For complete information on Masterpact handling and mounting, see the installation manual(s).

Before mounting the circuit breaker, make sure it matches the chassis.

Inserting Masterpact
Position the circuit breaker on the rails. Check that it rests on all four supports.

Open the circuit breaker (in any case, it opens automatically during connection).

Push the circuit breaker into the chassis, taking care not to push on the control unit.

If you cannot insert the circuit breaker in the chassis, check that the mismatch protection on the chassis corresponds to that on the circuit breaker.

Racking the circuit breaker from the "disconnected" to "test" position, then to "connected" position

The device is in "disconnected" position.

The device is in "test" position.

The device is in "connected" position.

Remove the crank or continue to "connected" position.
Matching a Masterpact circuit breaker with its chassis

To set up a mismatch-prevention combination for the circuit breaker and the chassis, see the mismatch-prevention installation manual.

The mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics.

The possible combinations are listed below.

<table>
<thead>
<tr>
<th>A B C D</th>
<th>567</th>
<th>B C D E</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C E</td>
<td>467</td>
<td>B C D F</td>
<td>157</td>
</tr>
<tr>
<td>A B C F</td>
<td>457</td>
<td>B C D G</td>
<td>147</td>
</tr>
<tr>
<td>A B C G</td>
<td>456</td>
<td>B C E F</td>
<td>146</td>
</tr>
<tr>
<td>A B D E</td>
<td>367</td>
<td>B C E G</td>
<td>137</td>
</tr>
<tr>
<td>A B D F</td>
<td>357</td>
<td>B D E F</td>
<td>136</td>
</tr>
<tr>
<td>A B D G</td>
<td>356</td>
<td>B D E G</td>
<td>135</td>
</tr>
<tr>
<td>A B E F</td>
<td>347</td>
<td>B D F G</td>
<td>134</td>
</tr>
<tr>
<td>A B E G</td>
<td>346</td>
<td>C D E F</td>
<td>127</td>
</tr>
<tr>
<td>A B F G</td>
<td>345</td>
<td>C D E G</td>
<td>126</td>
</tr>
<tr>
<td>A C D E</td>
<td>267</td>
<td>C E F G</td>
<td>124</td>
</tr>
<tr>
<td>A C D F</td>
<td>257</td>
<td>D E F G</td>
<td>123</td>
</tr>
<tr>
<td>A C D G</td>
<td>256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A C E F</td>
<td>247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A C E G</td>
<td>246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A C F G</td>
<td>245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A D E F</td>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A D E G</td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A D F G</td>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A E F G</td>
<td>234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The locking device is installed on the left or right-hand side of the chassis:
- when the circuit breaker is in "connected" or "test" position, the latch is lowered and the door is locked
- when the circuit breaker is in "disconnected" position, the latch is raised and the door is unlocked.

Disabling door opening
Close the door. Put the Masterpact in "test" or "connected" position. The door is locked.

Enabling door opening
Put the Masterpact in "disconnected" position. The door is unlocked.
Locking the circuit breaker in position

Combination of locking systems
To disable local or remote opening or closing of the circuit breaker, use as needed:
- one to three padlocks
- one or two keylocks
- a combination of the two locking systems.

Disabling connection when the circuit breaker is in "disconnected" position, using one to three padlocks (maximum shackle diameter 5 to 8 mm)

Locking
Circuit breaker in "disconnected" position.

1. Pull out the tab.
2. Insert the shackle (max. diameter 5 to 8 mm) of the padlock(s).
3. Release the tab.

Unlocking
Remove the padlock(s).

1. The crank cannot be inserted.
2. The crank can be inserted.
3. OK
Using the Masterpact drawout chassis

Locking the circuit breaker in position

Padlocks and keylocks may be used together.

Disabling connection when the circuit breaker is in "disconnected" position, using one or two keylocks.

Locking
Circuit breaker in "disconnected" position.

Unlocking
Insert the key(s).

Four types of keylocks are available

- **RONIS**
- **PROFALUX**
- **CASTELL**
- **KIRK**
Using the Masterpact drawout chassis

Locking the circuit breaker in position

For this operation, the circuit breaker must be removed from the chassis.

Disabling use of the crank in all positions

It is possible to modify the padlock and keylock locking function. Instead of locking only in "disconnected" position, it is possible to lock the circuit breaker in all positions.

Set the circuit breaker to "disconnected" position.
Insert the crank.
Remove the circuit breaker from the chassis.

Turn the catch to the right. The circuit breaker can now be locked in all positions.

All-position locking

Locking in "disconnected" position

rear view

Locking the circuit breaker when the door is open

When the door is open, the crank cannot be inserted.

When the door is closed, the crank can be inserted.
Using the Masterpact drawout chassis

Locking the safety shutters
Padlocking inside the chassis

Using the shutter locking blocks
Remove the block(s) from their storage position.
Position the block(s) on the guide(s).

Lock the block(s) using a padlock.

Four locking possibilities
Top and bottom shutters not locked.
Top shutter locked, Bottom shutter not locked.
Top shutter not locked, Bottom shutter locked.
Top and bottom shutters locked.
Using the Masterpact drawout chassis

Locking the safety shutters
Padlocking or position indication on the front

This system offers two functions:
- padlocking of the top or bottom shutters
- indication of the position of each shutter:
 - shutter open
 - shutter closed.

Locking
Pull out the left-hand tab to lock the top shutter.

Pull out the right-hand tab to lock the bottom shutter.

Pull out both tabs to lock both shutters.

Unlocking
Remove the padlock.

Insert a padlock (shackle 5 to 8 mm).

Insert a padlock (shackle 5 to 8 mm).

Insert a padlock (shackle 5 to 8 mm).

Release the tab(s).
Identifying the electrical auxiliaries

Identification of the connection terminals
Layout of terminal blocks

CD3 CD2 CD1 or CE6 CE5 CE4
 834 824 814
 832 822 812
 831 821 811

CE1
 364 354 344
 362 352 342
 361 351 341

MNMX2 MX1 XF PF MCH
D2/C12 C2 A2 254 B2
/C13 C3 A3 252 B3
D1/C11 C1 A1 251 B1

OF24 OF23 OF22 OF21 OF14 OF13 OF12 OF11 OF10 OF9 OF8 OF7 OF6 OF5 OF4 OF3 OF2 OF1 CT3 CT2 CT1
244 234 224 214 144 134 124 114 84 44 34 24 14 934 924 914
242 232 222 212 142 132 122 112 82 42 32 22 12 932 922 912
241 231 221 211 141 131 121 111 81 41 31 21 11 931 921 911

or or

EF24 EF23 EF22 EF21 EF14 EF13 EF12 EF11
248 238 228 218 148 138 128 118
246 236 226 216 146 136 126 116
245 235 225 215 145 135 125 115

or or

EF10 EF9 EF8 EF7 EF6 EF5 EF4 EF3 EF2 EF1

EF24 EF23 EF22 EF21 EF14 EF13 EF12 EF11
248 238 228 218 148 138 128 118
246 236 226 216 146 136 126 116
245 235 225 215 145 135 125 115

or or

MNMX2 MX1 XF PF MCH
D2/C12 C2 A2 234 B2
/C13 C3 A3 232 B3
D1/C11 C1 A1 251 B1

OF24 OF23 OF22 OF21 OF14 OF13 OF12 OF11 OF10 OF9 OF8 OF7 OF6 OF5 OF4 OF3 OF2 OF1
244 234 224 214 144 134 124 114 84 44 34 24 14
242 232 222 212 142 132 122 112 82 42 32 22 12
241 231 221 211 141 131 121 111 81 41 31 21 11

or or

OF10 OF9 OF8 OF7 OF6 OF5 OF4 OF3 OF2 OF1
244 234 224 214 144 134 124 114 84 44 34 24 14
242 232 222 212 142 132 122 112 82 42 32 22 12
241 231 221 211 141 131 121 111 81 41 31 21 11
The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in normal position.

Electrical diagrams

Fixed and drawout devices

Identifying the electrical auxiliaries

<table>
<thead>
<tr>
<th>Power</th>
<th>Control unit</th>
<th>Remote operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upstream cb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downstream cb</td>
<td></td>
</tr>
</tbody>
</table>

Control unit

- **Com**: E1-E6 communication
- **UC1**: Z1-Z5 zone selective interlocking; Z1 = ZSI OUT SOURCE
 Z2 = ZSI OUT; Z3 = ZSI IN SOURCE
 Z4 = ZSI IN ST (short time)
 Z5 = ZSI IN GF (earth fault)
 M1 = Vigi module input (Micrologic 7)
- **UC2**: T1, T2, T3, T4 = external neutral;
 M2, M3 = Vigi module input
 (Micrologic 7)
- **UC3**: F2+, F1– external 24 V DC power supply
 VN external voltage connector
- **UC4**: V1, V2, V3 optional external voltage protector
- **M2C**: 2 programmable contacts (internal relay);
 ext. 24 V DC power supply required
 or
- **M6C**: 6 programmable contact
 (external relay); 24 V DC power supply required

Remote operation

- **SDE2**: Fault-trip indication contact or
 Res: Remote reset
- **SDE1**: Fault-trip indication contact (supplied as standard)
- **MN**: Undervoltage release or
 MX2: Shunt release
- **MX1**: Shunt release (standard or communicating)
- **XF**: Closing release (standard or communicating)
- **PF**: "Ready to close" contact
- **MCH**: Gear motor.

Note:
When communicating MX or XF releases are used, the third wire (C3, A3) must be connected even if the communications module is not installed.

A: Digital ammeter
P: A + power meter + programmable protection
H: P + harmonics

04443720AA - 09/2009

Courtesy of NationalSwitchgear.com
Identifying the electrical auxiliaries

Electrical diagrams

Indication contacts

- **Open**: Off
- **Closed**: On

Chassis contacts

- **Disconnected**: CE6
- **Connected**: CE5
- **Test-position**: CE4

Indication contacts

- **OF4, OF3, OF2, OF1**: ON/OFF indication contacts
- **OF24, OF23, OF22, OF21**: Combined "connected/closed" indication contacts

Chassis contacts

- **CD3, CD2, CD1, CE3, CE2, CE1, CT3, CT2, CT1**: Contacts

Key

- **Drawout device only**: SDE1, OF1, OF2, OF3, OF4
- **Interconnected connections**: (only one wire per connection point)
Identifying the electrical auxiliaries

Operation

The ON/OFF indication contacts signal the status of the device main contacts.

Circuit breaker

<table>
<thead>
<tr>
<th>State</th>
<th>OF: ON/OFF (closed/open)</th>
</tr>
</thead>
<tbody>
<tr>
<td>completely closed</td>
<td>closed/open</td>
</tr>
<tr>
<td>open</td>
<td>closed</td>
</tr>
<tr>
<td>closed</td>
<td>open</td>
</tr>
</tbody>
</table>

Chassis

The carriage switches indicate the "connected", "test" and "disconnected" positions.

<table>
<thead>
<tr>
<th>State</th>
<th>Separation of the auxiliary circuits</th>
<th>Separation of the main circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>completely disconnected</td>
<td>open</td>
<td>closed</td>
</tr>
<tr>
<td>separation of the auxiliary circuits</td>
<td>closed</td>
<td>open</td>
</tr>
<tr>
<td>separation of the main circuits</td>
<td>closed</td>
<td>open</td>
</tr>
</tbody>
</table>

- **CT:** test position carriage switch
- **CD:** disconnected-position carriage switch
- **CE:** connected-position carriage switch

- d > 12.7 mm
- d > 25.4 mm
Discovering Masterpact's accessories

Micrologic control units

For more in-depth information, see the control-unit user manual.

Micrologic control units
- Standard equipment, one per device.
- Long-time rating plug and connection cables not included, see below:
 - Micrologic 2.0
 - Micrologic 5.0
 - Micrologic 2.0 A
 - Micrologic 5.0 A
 - Micrologic 6.0 A
 - Micrologic 7.0 A
 - Micrologic 5.0 P
 - Micrologic 6.0 P
 - Micrologic 7.0 P
 - Micrologic 5.0 H
 - Micrologic 6.0 H
 - Micrologic 7.0 H
- Connection cables:
 - for fixed device
 - for drawout device.
- Depending on the model, control units offer in addition:
 - fault indications
 - measurement of electrical parameters (current, voltage, power, etc)
 - harmonic analysis
 - communication.

Long-time rating plugs
- Standard equipment, one per control unit.
- 0.4 to 1 x Ir setting
- 0.4 to 0.8 x Ir setting
- 0.8 to 1 x Ir setting
- Off (no long-time protection).
- The plugs determine the setting range for the Long-time protection.

M2C and M6C programmable contacts
- Optional equipment, used with Micrologic P and H control units.
- Connection cables not included, see below:
 - 2 M2C contacts
 - 6 M6C contacts
- Connection cables:
 - for fixed device
 - for drawout device.
- Contacts can be programmed using the keypad on the control unit or via the COM option.
- They indicate:
 - the type of fault
 - instantaneous or delayed threshold overruns.
- M2C: 2 contacts (6 A-240 V)
- M6C: 6 contacts (6A-240V).
- Permissible load on each of the M6C relay outputs:
 - 240 V AC:
 - 5 A where p.f = 0.7
 - 380 V AC:
 - 3 A where p.f = 0.7
 - 24 V DC:
 - 8 A where L/R = 0
 - 48 V DC:
 - 1.5 A where L/R = 0
 - 125 V DC:
 - 0.4 A where L/R = 0
 - 250 V DC:
 - 0.15 A where L/R = 0
- M6C supply voltage: 24 V DC ± 5%
- M6C maximum consumption: 100 mA
Indication contacts

ON/OFF indication contacts (OF)
- Standard equipment: 4 OF per device.
- OF contacts indicate the position of main contacts.
- They trip when the minimum isolation distance between the main contacts is reached.
- 4 changeover contacts
- Rated current: 10 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1):
 - 480 V: 10 A (rms)
 - 600 V: 6 A (rms)
- Breaking capacity for DC power (DC12 as per 947-5-1):
 - 250 V: 3 A.

Additional ON/OFF indication contacts (OF)
- Optional equipment, two blocks of 4 OF contacts per device.
- Connection cables not included, see below:
 - one block of 4 OF contacts
 - Connection cables:
 - for fixed device
 - for drawout device.
- OF contacts indicate the position of the main contacts.
- They trip when the minimum isolation distance between the main contacts is reached.
- Changeover contacts
- Rated current: 10 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1):
 - 480 V: 10 A (rms)
 - 600 V: 6 A (rms)
- Breaking capacity for DC power (DC12 as per 947-5-1):
 - 250 V: 3 A.

Combined "connected/closed" contacts (EF)
- Optional equipment, 8 EF contacts per device.
- Each contact is mounted in place of the connector of an additional OF contact.
- One EF contact.
- The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information.
- Changeover contacts
- Rated current: 10 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1):
 - 240 V: 10 A (rms)
 - 380 V: 10 A (rms)
 - 480 V: 10 A (rms)
 - 600 V: 6 A (rms)
- Breaking capacity for DC power (DC12 as per 947-5-1):
 - 48 V: 2.5 A
 - 130 V: 0.8 A
 - 250 V: 0.3 A.

"Fault-trip" indication contact (SDE/1)
- Standard equipment on circuit breakers, one SDE/1 contact per device.
- Not available for switch-disconnector versions.
- The contact provides a remote indication of device opening due to an electrical fault.
- Changeover contact
- Rated current: 10 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1):
 - 240 V: 10 A (rms)
 - 380 V: 5 A (rms)
 - 480 V: 5 A (rms)
 - 600 V: 3 A (rms)
- Breaking capacity for DC power (DC12 as per 947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.15 A.
Discovering Masterpact’s accessories

Indication contacts

Additional “fault-trip” indication contact (SDE/2)
- Optional equipment for circuit breakers, one additional SDE/2 contact per device
- Not available for switch-disconnector versions
- Not compatible with the Res option
- Connection cables not included, see below:
 - for fixed device
 - for drawout device.

Electrical reset after fault trip (Res)
- Optional equipment, one Res per device
- Not compatible with the SDE/2 option
- Connection cables not included, see below:
 - 110/130 V AC
 - 220/240 V AC
- Connection cables:
 - for fixed device
 - for drawout device.

“Springs charged” limit switch contact (CH)
- Standard equipment, one CH contact per device.
- The contact indicates the “charged” status of the operating mechanism (springs charged).

“Ready to close” contact (PF)
- Optional equipment, one PF contact per device
- Connection cables not included, see below:
 - one PF contact
- Connection cables:
 - for fixed device
 - for drawout device.

Changeover contact
- Rated current: 10 A
- Breaking capacity
 - 50/60 Hz for AC power (AC12 as per 947-5-1):
 - 240 V: 10 A (rms)
 - 380 V: 5 A (rms)
 - 480 V: 5 A (rms)
 - 600 V: 3 A (rms)
- Breaking capacity for DC power (DC12 as per 947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.15 A.

Changeover contact
- Rated current: 10 A
- Breaking capacity
 - 50/60 Hz for AC power (AC12 as per 947-5-1):
 - 240 V: 10 A (rms)
 - 380 V: 5 A (rms)
 - 480 V: 5 A (rms)
 - 600 V: 3 A (rms)
- Breaking capacity for DC power (DC12 as per 947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.15 A.
Auxiliaries for remote operation

Moto-réducteur MCH

- Optional equipment, one MCH gear motor per device
- Connection cables not included, see below:
 - 100/130 V AC
 - 220/240 V AC
 - 277 V AC
 - 380/415 V AC
 - 400/440 V AC
 - 480 V AC
 - 24/30 V DC
 - 48/60 V DC
 - 100/125 V DC
 - 200/250 V DC
- Connection cables:
 - ☐ for fixed device
 - ☐ for drawout device
- The gear motor automatically charges and recharges the spring mechanism.
- Charging time: 4 seconds max.
- Consumption:
 - ☐ 180 VA AC
 - ☐ 180 W DC
 - ☐ Inrush current: 2 to 3 In for 0.1 second
 - Operating rate: maximum 3 cycles per minute.

Opening releases MX/1 and MX/2, closing release XF

- Optional equipment, 1 or 2 MX releases per device, 1 XF per device
- The function (MX or XF) is determined by where the coil is installed
- Connection cables not included, see below:
 - ☐ standard version:
 - 12 V AC
 - 50/60 Hz / DC
 - 24/30 V AC
 - 50/60 Hz / DC
 - 48/60 V AC
 - 50/60 Hz / DC
 - 100/130 V AC
 - 50/60 Hz / DC
 - 200/250 V AC
 - 50/60 Hz / DC
 - 277 V AC
 - 50/60 Hz / DC
 - 380/480 V AC
 - 50/60 Hz / DC
 - ☐ communicating version (with COM option):
 - 12 V AC
 - 50/60 Hz / DC
 - 24/30 V AC
 - 50/60 Hz / DC
 - 48/60 V AC
 - 50/60 Hz / DC
 - 100/130 V AC
 - 50/60 Hz / DC
 - 200/250 V AC
 - 50/60 Hz / DC
 - 240/277 V AC
 - 50/60 Hz / DC
 - 380/480 V AC
 - 50/60 Hz / DC.
- Connection cables:
 - ☐ for fixed device
 - ☐ for drawout device
- The MX release instantaneously opens the circuit breaker when energised
- The MX release instantaneously closes the circuit breaker when energised, if the device is "ready to close".
- Device response time:
 - ☐ MX: 50 ms ± 10
 - ☐ XF: 70 ms +10 / -15
 - > 3200 A: 80 ms ± 10
- Operating threshold:
 - ☐ MX: 0.7 to 1.1 x Un
 - ☐ XF: 0.85 to 1.1 x Un
- The supply can be maintained
- Consumption:
 - ☐ pick-up (80 ms): 200 VA
 - ☐ hold: 4.5 VA
Discovering Masterpact’s accessories

Auxiliaries for remote operation

Instantaneous undervoltage releases (MN)
- Optional equipment, 1 MN per device
- Not compatible with the MX/N opening release
- Connection cables not included, see below:
 - 24/30 V AC
 - 48/60 V AC
 - 50/60 Hz / DC
 - 100/130 V AC
 - 200/250 V AC
 - 380/480 V AC
 - 50/60 Hz / DC
- Connection cables:
 - for fixed device
 - for drawout device.
- The MN release instantaneously opens the circuit breaker when its supply voltage drops.
- Device response time: 90 ms ±5
- Operating threshold:
 - opening: 0.35 to 0.7 x Un
 - closing: 0.85 x Un
- Consumption:
 - pick-up (80 ms): 200 VA
 - hold: 4.5 VA.

Delay unit for MN releases
- Optional equipment, 1 MN with delay unit per device.
- Delay-unit (must be ordered in addition to the MN):
 - 48/60 V AC
 - 50/60 Hz / DC
 - 100/130 V AC
 - 200/250 V AC
 - 380/480 V AC
 - 50/60 Hz / DC
- The unit delays operation of the MN release to eliminate circuit-breaker nuisance tripping during short voltage dips
- The unit is wired in series with the MN and must be installed outside the circuit breaker.
- Device response time: 0.5, 1, 1.5, 3 seconds
- Operating threshold:
 - opening: 0.35 to 0.7 x Un
 - closing: 0.85 x Un
- Consumption:
 - pick-up (80 ms): 200 VA
 - hold: 4.5 VA.

Electrical closing pushbutton (BPFE)
- Optional equipment, 1 BPFE per device
- Connection cables not included, see below:
- Connection cables:
 - for fixed device
 - for drawout device.
- Located on the front face of the device, this pushbutton carries out electrical closing of the circuit breaker via the XF release, taking into account all the safety functions that are part of the control/monitoring system of the installation.
Device mechanical accessories

Discovering Masterpact's accessories

Operation counter (CDM)
- Optional equipment, one CDM per device.
- The operation counter sums the number of operating cycles.

Escutcheon (CDP)
- Optional equipment, one CDP per device
 - for fixed device
 - for drawout device.
- The CDP increases the degree of protection to IP 40 and IK 07 (fixed and drawout devices).

Transparent cover (CCP)
- Optional equipment, one CP per device equipped with a CDP
 - for fixed and drawout devices.
- Mounted with a CDP, the CP increases the degree of protection to IP 55 and IK 10 (fixed and drawout devices).
Device mechanical accessories

Transparent cover for pushbutton locking using a padlock, lead seal or screws
- Optional equipment, one locking cover per device.
- The transparent cover blocks access (together or separately) to the pushbuttons used to open and close the device.
- Locking requires a padlock, a lead seal or two screws.

Device locking in the OFF position using a padlock
- Optional equipment, one locking system per device.
- The unit inhibits local or remote closing of the device.
- Up to three padlocks may be used for locking.

Device OFF position locking kit for keylocks
- Optional equipment, one locking kit per device.
- Locks not included:
 - for Profalux or Ronis keylocks
 - for Castell keylocks
 - for Kirk keylocks.
- The kit inhibits local or remote closing of the device.

Keylocks required for the device locking kit
- One or two keylocks per locking kit
 - Ronis: 1 keylock, 2 keylocks.
 - Profalux: 1 keylock, 2 keylocks.
Chassis mechanical accessories

Safety shutters
- Optional equipment
- Set of shutters for top and bottom:
 - NW08/NW40
 - 3 poles
 - 4 poles
 - NW40b/NW63
 - 3 poles
 - 4 poles.
- Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the "disconnected" or "test" positions.
- IP20.

Shutter locking blocks
- Optional equipment:
 - 2 blocks for NW08 to NW40
 - 4 blocks for NW40b to NW63.
- The block may be padlocked. It:
 - prevents connection of the device
 - locks the shutters in the closed position.

Shutter position indication and locking on front face
- Optional equipment:
 - NW08/NW40
 - 3 and 4 poles
 - NW40b/NW63
 - 3 poles
 - 4 poles.
- This option located on the front of the chassis:
 - indicates that the shutters are closed
 - can be used to independently or simultaneously padlock the two shutters (top and bottom).

Circuit breaker locking in "disconnected" position
- Optional equipment, one locking system per device
 - for Profalux or Ronis keylocks
 - for Castell keylocks
 - for Kirk keylocks.
- Mounted on the chassis and accessible with the door closed, this system locks the circuit breaker in "disconnected" position using one or two keylocks.
- The "disconnected" position locking system may be modified to lock the circuit breaker in all three positions.

Keylocks required with the "disconnected" position locking system
- One or two keylocks per locking system
 - Ronis:
 - 1 keylock
 - 2 keylocks
 - Profalux:
 - 1 keylock
 - 2 keylocks.

Discovering Masterpact's accessories
Discovering Masterpact’s accessories

Chassis mechanical accessories

Door interlock
- Optional equipment, one door interlock per chassis.
- This device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position.
- It may be mounted on the left or right-hand side of the chassis.

Racking interlock
- Optional equipment, one racking interlock per chassis.
- This device prevents insertion of the racking handle when the cubicle door is open.
- It is mounted on the right-hand side of the chassis.

Mismatch protection
- Optional equipment, one mismatch protection device per chassis.
- Mismatch protection offers twenty different combinations that the user may select to ensure that only a compatible circuit breaker is mounted on a given chassis.

Auxiliary terminal shield (CB)
- Optional equipment, one CB shield per chassis
 - NW08/NW040
 - 3 poles
 - 4 poles
 - NW40b/NW63
 - 3 poles
 - 4 poles
- The shield prevents access to the terminal block of the electrical auxiliaries.
Discovering Masterpact’s accessories

Chassis mechanical accessories

"Connected", "disconnected" and "test" position carriage switches (CE, CD, CT)

- Optional equipment, one to nine carriage switches
- Standard configuration, 0 to 3 CE, 0 to 3 CD, 0 to 3 CT
- Other configurations (by ordering additional actuators):
 - 0 to 9 CE, 0 CD, 0 CT
 - 0 to 6 CE, 0 to 3 CD, 0 CT
 - 0 to 6 CE, 0 CD, 0 to 3 CT
- Connection cables not included, see below:
 - 1 carriage switch
 - 1 set of actuators for additional carriage switches
- Connection cables (per carriage switch).

- The carriage switches indicate the three positions:
 - CE: connected position
 - CD: disconnected position (when the minimum isolation distance between the main contacts and the auxiliary contacts is reached)
 - CT: test position.

- Changeover contact
- Rated current: 10 A
- Breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1):
 - 240 V: 10 A (rms)
 - 380 V: 5 A (rms)
- Breaking capacity for DC power (DC12 as per 947-5-1):
 - 250 V: 0.3 A.

E46095A

Discovering Masterpact’s accessories

Chassis mechanical accessories
Inspecting and testing before use

Initial tests

Procedure

A general check of the circuit breaker takes only a few minutes and avoids any risk of mistakes due to errors or negligence.

A general check must be carried out:
- Prior to initial use
- Following an extended period during which the circuit breaker is not used.

Toute A check must be carried out with the entire switchboard de-energised.
In switchboards with compartments, only those compartments that may be accessed by the operators must be de-energised.

Electrical tests
Insulation and dielectric-withstand tests must be carried out immediately after delivery of the switchboard. These tests are precisely defined by international standards and must be directed and carried out by a qualified expert.

Prior to running the tests, it is absolutely necessary to:
- Disconnect all the electrical auxiliaries of the circuit breaker (MCH, MX, XF, MN, Rés electrical remote reset)
- Remove the long-time rating plug on the 7.0 A, 5.0 P, 6.0 P, 7.0 P, 5.0 H, 6.0 H, 7.0 H control units. Removal of the rating plug disconnects the voltage measurement input.

Switchboard inspection
Check that the circuit breakers are installed in a clean environment, free of any installation scrap or items (tools, electrical wires, broken parts or shreds, metal objects, etc.).

Conformity with the installation diagram
Check that the devices conform with the installation diagram:
- Breaking capacities indicated on the rating plates
- Identification of the control unit (type, rating)
- Presence of any optional functions (remote ON/OFF with motor mechanism, auxiliaries, measurement and indication modules, etc.)
- Protection settings (long time, short time, instantaneous, earth fault)
- Identification of the protected circuit marked on the front of each circuit breaker.

Condition of connections and auxiliaries
Check device mounting in the switchboard and the tightness of power connections.
Check that all auxiliaries and accessories are correctly installed:
- Electrical auxiliaries
- Terminal blocks
- Connections of auxiliary circuits.

Operation
Check the mechanical operation of the circuit breakers:
- Opening of contacts
- Closing of contacts.

Check on the control unit
Check the control unit of each circuit breaker using the respective user manuals.

These operations must be carried out in particular before using a Masterpact device for the first time.
Note the fault
Faults are signalled locally and remotely by the indicators and auxiliary contacts installed on circuit breakers (depending on each configuration). See page 12 in this manual and the user manual of the control unit for information on the fault indications available with your circuit breaker.

Identify the cause of tripping
A circuit must never be reclosed (locally or remotely) before the cause of the fault has been identified and cleared.

A fault may have a number of causes:
- depending on the type of control unit, fault diagnostics are available. See the user manual for the control unit.
- depending on the type of fault and the criticality of the loads, a number of precautionary measures must be taken, in particular the insulation and dielectric tests on a part of or the entire installation. These checks and test must be directed and carried out by qualified personnel.

Inspect the circuit breaker following a short-circuit
- Check the arc chutes (see page 43).
- Check the contacts (see page 43).
- Check the tightness of connections (see the device installation manual).
- Check the disconnecting-contact clusters (see page 44).

Reset the circuit breaker
The circuit breaker can be reset locally or remotely. See page 12 in this manual for information on how the circuit breaker can be reset.
Maintaining Masterpact performance

Recommended program for devices used under normal operating conditions:
Ambient temperature: -5° C / +60°C
Normal atmosphere

Recommended maintenance program

Periodic inspections required

<table>
<thead>
<tr>
<th>Interval</th>
<th>Operations</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each year</td>
<td>Open and close the device locally and remotely, successively using the various auxiliaries</td>
<td>see pages 10 and 11.</td>
</tr>
<tr>
<td></td>
<td>Test the operating sequences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test the control unit using the mini test kit.</td>
<td></td>
</tr>
<tr>
<td>Every two years or when the control-unit maintenance indicator reaches 100</td>
<td>Check the arc chutes</td>
<td>see page 43</td>
</tr>
<tr>
<td></td>
<td>Check the main contacts</td>
<td>see page 43</td>
</tr>
<tr>
<td></td>
<td>Check the tightness of connections</td>
<td>see the device installation manual</td>
</tr>
<tr>
<td></td>
<td>Check the disconnecting-contact clusters</td>
<td></td>
</tr>
</tbody>
</table>

Parts requiring replacement, depending on the number of operating cycles.
The following parts must be replaced periodically to lengthen the service life of the device (maximum number of operating cycles).

<table>
<thead>
<tr>
<th>Part</th>
<th>Intervening entity</th>
<th>Description or procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc chutes</td>
<td>User.</td>
<td>see page 43.</td>
</tr>
<tr>
<td>Main contacts</td>
<td>Inspection: user</td>
<td>see page 43.</td>
</tr>
<tr>
<td></td>
<td>Replacement: Schneider After Sales Support.</td>
<td></td>
</tr>
<tr>
<td>MCH gear motor</td>
<td>User.</td>
<td>see page 9.</td>
</tr>
<tr>
<td>Mechanical interlocks</td>
<td>User.</td>
<td></td>
</tr>
<tr>
<td>Connecting-rod springs</td>
<td>Schneider After Sales Support.</td>
<td></td>
</tr>
<tr>
<td>MX/MN/XF</td>
<td>User.</td>
<td>see page 10, 11.</td>
</tr>
</tbody>
</table>

Part replacement must be programmed on the basis of the data below, listing the service life of the various parts in numbers of O/C cycles at the rated current.

Number of O/C cycles at the rated current

<table>
<thead>
<tr>
<th>Type of circuit breaker</th>
<th>Maximum service life Arc chutes (chutes)</th>
<th>Service life of various parts Main contacts (MCH)</th>
<th>Connecting-rod springs (690 V: 6000)</th>
<th>MX/XF releases (1250 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW08 to NW16</td>
<td>25000</td>
<td>10000</td>
<td>10000</td>
<td>12500</td>
</tr>
<tr>
<td>types N1/H1/H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW08 to NW16</td>
<td>25000</td>
<td>3000</td>
<td>10000</td>
<td>12500</td>
</tr>
<tr>
<td>type L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW20</td>
<td>20000</td>
<td>440 V: 8000</td>
<td>440 V: 8000</td>
<td>12500</td>
</tr>
<tr>
<td>types H1/H2</td>
<td></td>
<td>690 V: 6000</td>
<td>690 V: 6000</td>
<td></td>
</tr>
<tr>
<td>NW20</td>
<td>20000</td>
<td>440 V: 8000</td>
<td>440 V: 8000</td>
<td>12500</td>
</tr>
<tr>
<td>to NW25</td>
<td></td>
<td>690 V: 6000</td>
<td>690 V: 6000</td>
<td></td>
</tr>
<tr>
<td>type H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW20</td>
<td>20000</td>
<td>2000</td>
<td>440 V: 8000</td>
<td>12500</td>
</tr>
<tr>
<td>type L1</td>
<td></td>
<td></td>
<td>690 V: 6000</td>
<td></td>
</tr>
<tr>
<td>NW25</td>
<td>20000</td>
<td>3000</td>
<td>10000</td>
<td>12500</td>
</tr>
<tr>
<td>to NW40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>types H1/H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW32</td>
<td>20000</td>
<td>440 V: 5000</td>
<td>440 V: 5000</td>
<td>12500</td>
</tr>
<tr>
<td>to NW40</td>
<td></td>
<td>690 V: 2500</td>
<td>690 V: 2500</td>
<td></td>
</tr>
<tr>
<td>type H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW40b</td>
<td>10000</td>
<td>1250</td>
<td>440 V: 5000</td>
<td>12500</td>
</tr>
<tr>
<td>to NW63</td>
<td></td>
<td></td>
<td>690 V: 2500</td>
<td></td>
</tr>
<tr>
<td>types H1/H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maintaining Masterpact performance

Maintenance operations

Before undertaking any maintenance work, de-energise the installation and fit locks or warnings in compliance with all applicable safety standards.

Arc chutes
- Remove the fixing screws:
 - types N1, H1 and H2 ≤ NW 40: two screws
 - types H1 and H2 > NW 40b, type H3: three screws
 - type L1: four screws.

- Check the arc chutes:
 - chamber not cracked
 - separators not corroded.

If necessary, replace the arc chutes.

Wear of main contacts
- Remove the arc chutes.
- Close the device and check the contacts.

Note: It is normal to see variations of the wear indication between the poles of a single device that is new or used. A new device does not have a pole in the indication area of contacts worn.

If the control unit has a maintenance indicator, there is no need to systematically check the contacts.

If the contacts are worn, have the concerned poles replaced by the Schneider Service centre.

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacts OK</td>
<td>Contacts OK</td>
</tr>
<tr>
<td>NW 08-40 NA, HA, H1, H2, HA10, H10, NAVY CEI</td>
<td>NW 40b-63 H1, H2, NA, HA CEI</td>
</tr>
<tr>
<td>NW 08-20 N1 CEI</td>
<td>NW 08-20 L1 CEI</td>
</tr>
<tr>
<td>NW 20-40 H3 CEI</td>
<td>NW 50-60 L UL</td>
</tr>
<tr>
<td>NW 10-40 NDC, HDC</td>
<td>NW 08-60 L1 ANSI</td>
</tr>
<tr>
<td>NW 08-20 N UL</td>
<td>NW 08-40 H1 ANSI</td>
</tr>
<tr>
<td>NW 08-30 H UL</td>
<td>NW 10-40 HADC</td>
</tr>
<tr>
<td>NW 08-40 H2, H3 ANSI</td>
<td>NW 40 EARTHING SWITCH</td>
</tr>
</tbody>
</table>

Before undertaking any maintenance work, de-energise the installation and fit locks or warnings in compliance with all applicable safety standards.
Disconnecting-contact clusters

- Grease the contacts using the grease listed on page 45, supplied by Schneider Electric
- Check the contacts as follows:
 - Open the circuit breaker
 - De-energise the busbars
 - Disconnect the circuit breaker
 - Remove the circuit breaker
- Check the contact fingers (no sign of copper should be visible)
- Replace any worn clusters.
- The position of the clusters must correspond to the table below.

<table>
<thead>
<tr>
<th>Rating Type</th>
<th>NW08</th>
<th>NW10</th>
<th>NW16</th>
<th>NW20</th>
<th>NW25</th>
<th>NW32</th>
<th>NW40</th>
<th>NW40b</th>
<th>NW50</th>
<th>NW63</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>layout n° 1</td>
<td>2 clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>layout n° 2</td>
<td>4 clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>layout n° 3</td>
<td>8 clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>layout n° 4</td>
<td>12 clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>layout n° 5</td>
<td>14 clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>layout n° 6</td>
<td>24 clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>layout n° 7</td>
<td>24 clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrosion protection</th>
<th>NW08</th>
<th>NW10</th>
<th>NW16</th>
<th>NW20</th>
<th>NW25</th>
<th>NW32</th>
<th>NW40</th>
<th>NW40b</th>
<th>NW50</th>
<th>NW63</th>
</tr>
</thead>
<tbody>
<tr>
<td>layout 2</td>
<td>4 "GOLDEN" clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>layout 3</td>
<td>8 "GOLDEN" clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>layout 4</td>
<td>14 "GOLDEN" clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>layout 5</td>
<td>24 "GOLDEN" clusters/pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering replacement parts

Electrical accessories
The electrical accessories that may require replacement are the following:
- MCH gear motor
- MX opening release(s)
- XF closing release
- MN undervoltage release.

See pages 33 and 34 in the “Auxiliaries for remote operation” section for their characteristics.

Arc chutes
- 1 arc chute:
 - NW type N1
 - NW08 to NW40 types H1 and H2
 - NW40b to NW63 types H1 and H2
 - NW type H3
 - NW type L1.

- NW08 to NW40: one chute per pole
- NW40b to NW63: two chutes per pole.

Disconnecting-contact clusters for standard NW
- 1 cluster.
 - Number per circuit breaker; see table page 44.

Grease for disconnecting-contact clusters
- 1 can for standard NW.
 - 1 can for NW with corrosion protection.

Front
- 1 front for 3- or 4-pole devices.
 - 1 per device.

Charging handle
- 1 handle per device.

Crank
- 1 crank per device.
Troubleshooting and solutions

Problem: Circuit breaker cannot be closed locally or remotely

<table>
<thead>
<tr>
<th>Probable causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker padlocked or keylocked in the "open" position</td>
<td>□ disable the locking function</td>
</tr>
<tr>
<td>Circuit breaker interlocked mechanically in a source changeover system</td>
<td>□ check the position of the other circuit breaker in the changeover system</td>
</tr>
<tr>
<td>Circuit breaker not completely connected</td>
<td>□ modify the situation to release the interlock</td>
</tr>
<tr>
<td>The reset button signalling a fault trip has not been reset</td>
<td>□ clear the fault</td>
</tr>
<tr>
<td>Stored energy mechanism not charged</td>
<td>□ charge the mechanism manually</td>
</tr>
<tr>
<td>MX opening shunt release permanently supplied with power</td>
<td>□ if it is equipped with a MCH gear motor, check the supply of power to the motor. If the problem persists, replace the gear motor (MCH)</td>
</tr>
<tr>
<td>MN undervoltage release not supplied with power</td>
<td>□ there is an opening order. Determine the origin of the order. The order must be cancelled before the circuit breaker can be closed</td>
</tr>
<tr>
<td>XF closing release continuously supplied with power, but circuit breaker not "ready to close" (XF not wired in series with PF contact)</td>
<td>□ cut the supply of power to the XF closing release, then send the closing order again via the XF, but only if the circuit breaker is "ready to close"</td>
</tr>
<tr>
<td>Permanent trip order in the presence of a Micrologic P or H control unit with minimum voltage and minimum frequency protection in Trip mode and the control unit powered</td>
<td>□ Disable these protection functions on the Micrologic P or H control unit</td>
</tr>
</tbody>
</table>

Problem: Circuit breaker cannot be closed remotely but can be opened locally using the closing pushbutton

<table>
<thead>
<tr>
<th>Probable causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing order not executed by the XF closing release</td>
<td>□ check the voltage and the supply circuit (0.85 - 1.1 Un). If the problem persists, replace the XF release</td>
</tr>
</tbody>
</table>

Problem: Unexpected tripping without activation of the reset button signalling a fault trip

<table>
<thead>
<tr>
<th>Probable causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN undervoltage release supply voltage too low</td>
<td>□ check the voltage and the supply circuit (U > 0.85 Un).</td>
</tr>
<tr>
<td>Load-shedding order sent to the MX opening release by another device</td>
<td>□ check the overall load on the distribution system</td>
</tr>
<tr>
<td>Unnecessary opening order from the MX opening release</td>
<td>□ if necessary, modify the settings of devices in the installation</td>
</tr>
<tr>
<td></td>
<td>□ determine the origin of the order</td>
</tr>
</tbody>
</table>

Problem: Unexpected tripping with activation of the reset button signalling a fault trip

<table>
<thead>
<tr>
<th>Probable causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>a fault is present:</td>
<td>□ determine and clear the causes of the fault</td>
</tr>
<tr>
<td>▪ overload</td>
<td>□ check the condition of the circuit breaker before putting it back into service</td>
</tr>
<tr>
<td>▪ earth fault</td>
<td>□ press the reset button</td>
</tr>
<tr>
<td>▪ short-circuit detected by the control unit</td>
<td>□ modify the distribution system or the control-unit settings</td>
</tr>
</tbody>
</table>

Problem: Instantaneous opening after each attempt to close the circuit breaker with activation of the reset button signalling a fault trip

<table>
<thead>
<tr>
<th>Probable causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal memory</td>
<td>□ see the user manual of the control unit</td>
</tr>
<tr>
<td>Transient overcurrent when closing</td>
<td>□ modify the distribution system or the control-unit settings</td>
</tr>
<tr>
<td>Closing on a short-circuit</td>
<td>□ check the condition of the circuit breaker before putting it back into service</td>
</tr>
<tr>
<td></td>
<td>□ press the reset button</td>
</tr>
<tr>
<td></td>
<td>□ clear the fault</td>
</tr>
<tr>
<td></td>
<td>□ press the reset button</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable causes</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Circuit breaker cannot be opened remotely, but can be opened locally</td>
<td>- Opening order not executed by the MX opening release</td>
</tr>
<tr>
<td></td>
<td>- Opening order not executed by the MN undervoltage release</td>
</tr>
<tr>
<td>Circuit breaker cannot be opened locally</td>
<td>- Operating mechanism malfunction or welded contacts</td>
</tr>
<tr>
<td>Circuit breaker cannot be reset locally but not remotely</td>
<td>- Insufficient supply voltage for the MCH gear motor</td>
</tr>
<tr>
<td>Nuisance tripping of the circuit breaker with activation of the reset button signalling a fault trip</td>
<td>- Reset button not pushed-in completely</td>
</tr>
<tr>
<td>Impossible to insert the crank in connected, test or disconnected position</td>
<td>- A padlock or keylock is present on the chassis or a door interlock is present</td>
</tr>
<tr>
<td>Impossible to turn the crank</td>
<td>- The reset button has not been pressed</td>
</tr>
<tr>
<td>Circuit breaker cannot be removed from chassis</td>
<td>- Circuit breaker not in disconnected position</td>
</tr>
<tr>
<td></td>
<td>- The rails are not completely out</td>
</tr>
<tr>
<td>Circuit breaker cannot be connected (racked in)</td>
<td>- Cradle/circuit breaker mismatch protection</td>
</tr>
<tr>
<td></td>
<td>- The safety shutters are locked</td>
</tr>
<tr>
<td></td>
<td>- The disconnecting-contact clusters are incorrectly positioned</td>
</tr>
<tr>
<td></td>
<td>- Cradle locked in disconnected position</td>
</tr>
<tr>
<td></td>
<td>- The reset button has not been pressed, preventing rotation of the crank</td>
</tr>
<tr>
<td></td>
<td>- The circuit breaker has not been sufficiently inserted in the cradle</td>
</tr>
<tr>
<td>Circuit breaker cannot be locked in disconnected position</td>
<td>- The circuit breaker is not in the right position</td>
</tr>
<tr>
<td></td>
<td>- The rails are not completely out</td>
</tr>
<tr>
<td>Circuit breaker cannot be locked in connected, test or disconnected position</td>
<td>- Check that locking in any position is enabled</td>
</tr>
<tr>
<td></td>
<td>- The circuit breaker is not in the right position</td>
</tr>
<tr>
<td></td>
<td>- The cranking is still in the cradle</td>
</tr>
<tr>
<td>The crank cannot be inserted to connect or disconnected the circuit breaker</td>
<td>- The rails are not completely in</td>
</tr>
<tr>
<td>The right-hand rail (chassis alone) or the circuit breaker cannot be drawn out</td>
<td>- The cranking is still in the chassis</td>
</tr>
</tbody>
</table>
Environmental conditions

Checking Masterpact operating conditions

Ambient temperature
Masterpact NW devices can operate under the following temperature conditions:
- the electrical and mechanical characteristics are stipulated for an ambient temperature of -5 °C to +70 °C
- circuit-breaker closing is guaranteed down to -35 °C
- Masterpact NW (without the control unit) can be stored in an ambient temperature of -40 °C to +85 °C
- the control unit can be stored in an ambient temperature of -25 °C to +85 °C.

Extreme atmospheric conditions
Masterpact NW devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
- IEC 68-2-1: dry cold at -55 °C
- IEC 68-2-2: dry heat at +85 °C
- IEC 68-2-30: damp heat (temperature +55 °C, relative humidity 95%)
- IEC 68-2-52 level 2: salt mist.

Masterpact NW devices can operate in the industrial environments defined by standard IEC 947 (pollution degree up to 4).

It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Masterpact NW devices with corrosion protection have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
- IEC 68-2-42: atmospheres containing sulphur dioxide (SO₂)

Vibrations
Masterpact NW devices resist electromagnetic or mechanical vibrations.

Tests are carried out in compliance with standard IEC 68-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd’s, etc.):
- 2 to 13.2 Hz: amplitude ±1 mm
- 13.2 to 100 Hz: constant acceleration 0.7 g.

Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.
Altitude

Masterpact NW devices are designed for operation at altitudes under 2000 metres.

At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics.

<table>
<thead>
<tr>
<th>Altitude (m)</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric resistance voltage (V)</td>
<td>3500</td>
<td>3150</td>
<td>2500</td>
<td>2100</td>
</tr>
<tr>
<td>Average insulation level (V)</td>
<td>1000</td>
<td>900</td>
<td>700</td>
<td>600</td>
</tr>
<tr>
<td>Maximum utilisation voltage (V)</td>
<td>690</td>
<td>590</td>
<td>520</td>
<td>460</td>
</tr>
<tr>
<td>Average thermal current (A) at 40 °C</td>
<td>1 x In</td>
<td>0.99 x In</td>
<td>0.96 x In</td>
<td>0.94 x In</td>
</tr>
</tbody>
</table>

Electromagnetic disturbances

Masterpact NW devices are protected against:

- overvoltages caused by devices that generate electromagnetic disturbances
- overvoltages caused by an atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
- devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- electrostatic discharges produced by users.

Masterpact NW devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:

- IEC 947-2, appendix F
- IEC 947-2, appendix B (trip units with earth-leakage function).

The above tests guarantee that:

- no nuisance tripping occurs
- tripping times are respected.

Cleaning

- Non-metallic parts:
 - never use solvent, soap or any other cleaning product. Clean with a dry cloth only
- Metal parts:
 - clean with a dry cloth whenever possible. If solvent, soap or any other cleaning product must be used, make sure that it does not come into contact with non-metallic parts.
As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

This document has been printed on ecological paper

Design: Schneider Electric
Photos: Schneider Electric
Printed: Schneider Electric